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THEORETICAL INVESTIGATION OF THE STABILITY AT NEGATIVE

STATIC MARGINS OF A SUPERSONIC MISSILE WITH AN
AUTOPILOT SENSITIVE TO PITCH ANGLE
AND PITCHING VELOCITY

By Henry A. Cole, Jr., and Marvin Abramovitz
SUMMARY

Stability charts covering e range of small positive and negative
static margins are presented for a supersonic missile with an autopilot
sensitive to angle of pitch and rate of pitch. This dynamic system is
first considered in its most simplified form with a perfect control
servo and separate feedback signals. Thus the effect of each type of
feedback is determined. Then & simple time lag is added to the control
servo, and finally the complete system is considered with a second-order
control servo and a rate gyro with a simple time lag. The results in
the form of stability boundaries and lines of constant demping ratio and
periocd show that time lags have an adverse effect on stability at nega-
tive static margins, but that this can be counteracted by using ample
gain in the rate-of-pitch feedback loop.

Methods of simplifying the characteristic stability equation are
discussed. The assumption of two degrees of freedom in the airframe
transfer function 1s justified by showing that the effects of other
system modes on the translent response are negligible compared to effects
of the short-period osclllatory system mode.

INTRODUCTION

In order to lmprove the performance of a missile, satisfactory
stability at small positive or even negative statlc margins is often
necessary. For example, in long-range tailless missiles, a significant
increase in maximum lift-drag ratio can be obtained by designing the
wing for a negative static mergin. Furthermore, some air-to-air, boost-
glide missiles incur such a large shift in the center of gravity due to
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fuel consumption that, in order to provide sufflcient maneuverability
after boost, the missile must be flown with a negative static margin in
the launching phase. Since this requires automatlc stabilization which
is a very broad field in itself, a practicel approach to the general
solution 1s to investigate a particular example in order to obtailn infor-
mation which might apply to the general case.

This report presents a theoretical investigation of the stability
of a variable-incidence boost-glide supersonic missile with a simple
conventional autopllot over a range of alrframe static margins with par-
ticular emphasis on the negative renge. The effects of pltch-angle
feedback, rate-of-pitch-angle feedback, autopilot gearing, and control-
servo and rate-gyro dynamic characteristics on the existence and degree
of stability are considered. These particular feedback signals were
selected because they are characteristic of the two basic types of
signals needed to stebillze a statically unstable missile, namely a
posltive spring-force signal and a damping-force signal. A rate-of-pitch
signal is ordinarily used in missile stablllzatlon systems for demping,
and pitch angle is one of several possible signals available for provid-
ing a spring force.

A number of analytical techniques are avallable for an investigation
of this type. (See reference 1.) Of these methods, the charts of con-
stant damping ratio and period of the missile-asutopilot principal mode
plotted in the autopilot-gearing-static-margin plane appear to offer the
most comprehensive representation of stability for they show not only
the regions of stablility but also the degree of stabllity. There are a
number of complications, not considered in this report, which arise in
an actual missile firing. For example, even though & boost-glide missile
is dynamically stable, the dispersion at burn-out might be too large
because of out-of-trim moments, rough air, or initial launching condi-
tions. Furthermore, the limits of control-surface deflection and satu-
ration of autopilot elements may introduce nonlinearities into the
equations of motion. Alithough these complications are beyond the scope
of this report, this analysis does indicate the practicability of
successfully flying a statlcelly unstasble boost-glide migsile with an
autopilot. Furthermore, although the results are for a particular con-
figuration, the assumptions verified in the analysis may be useful in
analyzing similar problems and the conclusions mey apply qualitatively
to other missiles.

SYMBOLS

Cm pitchlng-moment coefficient

D differential operator ( %)

« I



NACA RM AS2ALk ?ﬁi

m

m|b¢

gearing or gain

radius of gyration of missile about principal lateral axis, feet

missile-autopilot period.< 2 ), seconds
2
wa 1=t

ratio of rate-gyro gain to displacement-gyro galn, seconds
exposed wing area, square feet

rate-gyro time lag, seconds

veloclity, feet per second

body radius, feet

wing span, feet

wing chord, feet

b/2
S

wing mean aerodynamic chord a
b/2
[ ey
a

./ -1
mass, slugs

AV
longitudinal perturbation velocity v

voltage

force along longitudinal axis

pVes

distance from neutral point to center of gravity, positive when
center of gravity is shead of neutral point, feet

static margin
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force perpendicular to longitudinsel axils

pV3s
angle of attack, radians
control deflection, radians

piteh angle, radisns _ _

m
<};§V s 8econds

missile-autoplilot natural frequency, radians per second
control-servo natural frequency, radisns per second
missile-autopilot demping ratio, nondimensional

control-servo damping ratio, nondimensional
Subscripts - -

displacement gyro
actuating signal
input

output

rate gyro

control servo

3

3u
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ANATYSIS

The migsile-autopilot system in this analysis is represented by the
block diagrem of figure 1. The autopilot consists of a displacement
gyro, a rate gyro, a control servo, and a differential, or their equiva-
lents. Following is a development of the transfer functions of the com-
ponents and the closed-loop transfer function of the complete systemn,
and the method of constructing period and damping-ratio curves.

Transfer Functions of Components

Alrframe.~ The missile, shown in figure 2, is a variable-incidence
cruciform configuration and is assumed to be completely roll staebilized.
The longitudinal equations of motion as given in reference 2 are

zu + (z +1D)a + (2zg-TD)6, = - 2B (1)
2 2 .
lelu + (Cmu"i'Cm&lD)(I + <CID.éD - % D2>60 = - Cmas

Because preliminary calculations indicated that the degree of
freedom along the longitudinal axis had little effect on the stability
boundaries, two degrees of freedom were assumed in deriving the

-
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aerodynamic transfer function. If terms involving changes in forward
velocity are neglected, the equations of motion become

(2o, +D)a + (2g-TD)E, = - 25D
(2)
2TKy" 2
(Cm +Cm,D) + <CméD - 'TIEL D)Go = - CngB

If the equations are solved for 6y/8, the airframe transfer function
may be easily derived giving:

90 alD -+ bl

s D(azD?+bD+cp)

(3)

where

- TC

o
1l

1= % Cmg, mg

by =25 Cmgy - Za Omy

o
)]
]

a
T(Cmé+Cma) + ?? Zg,

c TC + Zy Che
2 m. @ Vmh

The stability derivatives for the missile were calculated from
wind-tunnel data for a Msch number of 2.0 and a pressure sltitude
of 30,000 feet. All the derivatives including the ones required in the
three-degrees-of-freedom transfer function of reference 2 are listed as
functions of static margin in table I. As usual small angles were
assumed.

Autopilot.- The displacement gyro is assumed to be perfect with a

voltage output proportional to pitch angle. Hence the transfer function
is:

a4 Kg (k)

PN
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The rate gyro has a voltage output proportional to rate of pitch
amplified by the gain constant R K. Practical experience indicates
that the voltage output of the rate gyro lags the rate of pitch, and
that the lag may be closely approximsted by introducing the time-lag
term T. This time lag, not toc be confused with delsy, or "dead,"
time, represents an exponential rise in the transient response and is
sometimes called the time constant. A typlecal value of time lag is
0.02 second, which in the form l/l + TD has approximately the same
frequency response up to a frequency of 30 radians per second as a
second-order dynamical system with a damping ratio of 0.7, and a natural
frequency of 60 radians per second. The transfer function is:

vy R K3D
o I+ (5)

The control servo responds to actuating signal as a second-order
dynamical system and produces & control deflection amplifled by the
control-servo gearing Kg. Hence:

'\?_ = ot = 1 (6)
€ 1+228p4 —s D2
Wg Ws

The term 2g/wg has the dimensions of time and may be considered
to be a time lag in the same sense ags T when the frequency is high
enough to mske the second-order term lnsignificant.

Alrframe and sutopilot combination.- By the algebra of block
disgrams in closed loops described in reference 3, the closed-loop
transfer function of the missile with autopilot (fig. 1) is obtained.

N ) Kégégﬁ})+ b1) (1 + ™) _ N
61 <1+?wé§n + w—i'-gD2> D(azDZ+bzD+c 2) (1+TD) +KgK [ 1+(R+T) D] (2 1D+b; )

The denominator of this transfer function determines the stability
of the missile-autopilot combination and, when set equal to zero, is
known asg the characteristic stability equation. When the serodynamic
coefficients &a,, by, bpyand ¢, are expressed in terms of x/g,
the coefficlents of the characteristic equation sbove are functions only
of a,, x/8, KaKgs Ry T, £, and wg.

Of these varisbles T and g are more or less determined by
physical limitations of existing equipment, and a, is fixed by the
inertial characteristics of the airframe which are assumed constant in

”
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the example. Hence, x/E, KgKg, Csy and R are the principal varilables.
For purposes of comparison with the time constants__§s is considered in
the form 2§ /wg.

Method of Constructing Period and Damping-
Ratio Curves

Curveg of constant period and damping ratio were determined by the
method of reference 4 and by solution of the roots of the characteristic
stabllity equation. The former method was used to obtain the curves for
the principal oscillatory mode and the latter method to obtain the curves
for all modes of motion. The Hurwitz-Routh criteria was applied where
practical as a check (reference 1).

In applying the method of reference 4 to obtain curves of constant
period and demping ratio in the autopilot-gearing-static-margin plane,
the simultaneous equations from the real and imsginary parts were simpli-
fied in a manner depending on the frequency range. For example, in
determining the stebility boundary ({ = 0), D = jw is substituted in
the characterlstic stability equation. Separating real and imaginary
parts and solving each for KgKg gives: '

- a2 wh+ |'02 ..+b2< S +T)+&2}”2-02+T [ ( 25— + )h’*%ze—ci w2 :l

K dK 5SS maper TP rE o= oM

8 a; + b, R+ 1)

from the imaginsry part and
by 4 a 2t c
—28 .7 2 _&we_< 28 + 22 w‘{l
[:—5 +a2< +T>:|w +[:c2< + > +b2]w +T[mse bs pryTe-

KaKs = — —
-a, (R + T) w2 + by

from the real pert.

If KgKg from real and imaginary parts are equated, a cublc
equation in w2 results, but, if order of magnitude of terms 1s con-
sidered, this may be reduced to a quadratic as follows: For high values
of w2 s by may be neglected in the denominator of KgKg from the real
part because -al(R+T)w2:i>bl. Except at high frequencies where
the w® term becomes important, the last terms in the numerators of
both expressions of 'KgKg may be neglected becausé the coefficients
involve products of two of the small quantities T, 1/wg® and 2§sﬁns.
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Furthermore, terms in l/msz may be neglected if wg 1is large enough
2
so that l/m52<<<# + T> and v <<wWwg. This corresponds to the assump-
8

tion of a first-order gervo. In the example which follows the low-
frequency assumption was found valid for determining the lower boundary
and the high-frequency assumption for the upper boundary. These simpli-
fications also apply to the equations for determining curves of constant
damping ratio. These curves were obtained by substituting

D=-tw+ jual-Lt2 in the characteristic stability equation.

From the values of frequency and damping ratio obtained sbove, the
period wes determined and cross plotted with x/3 and KgKg to obtain
curves of constant period.

It should be pointed out that this simplifying procedure only
determines the stebility boundaries of two oscillatory modes. To insure
complete stability within these boundaries, the stability of the other
modes must also be verified.

RESULTS AND DISCUSSION

Stability of Missile Without Autopilot

In order to determine clearly the effects of the sutopilot, the
stability of the migsile alone is first considered. In thls case auto-
pllot gearing is zero and stability 1s dependent on the characteristic
stability function given by the denominstor of'the aerodynamlc transfer
function 90/8. For positive static margins, the characteristic equation
has two complex conjugate roots with negative real parts which gives a
convergent oscillatory motion in the transient response. As static mar-
gin is decreassed, cp goes to zero, which indicates neutral stebility.
This occurs at a small negative value of static margin (x/& = - 0.0037)
which is called the maneuvering point. At more negative values of statlc
margin, cp 1s negetive and the characteristic stabllity equatlion hes a
negative real root and a positive real root which gives a nonoscillatory
divergent motion.

Stability of Simplified Cases of Migsile-
Autopilot Combination

When the complete missile-autopilot system of figure 1 is considered,
there are so many variables thet it is difficult to obtain a clear pic-
ture of the individual effects unless simplifications are made. In this

-
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direction, before considering the complete system with all variables,
the components were gimplified and the stability was investigated first
with displacement feedback aonly and then with rate feedback only. Then
for each case the effect of a simple servo time lag was investigated.
The stability boundaries of these cases are shown in figure 3 and are
described below.

Displacement feedback only and a perfect servo
(R = 2lg/wg = 1/wg® = 0).~- In this case the stability boundary extends

without 1limit into the negative static-margin region. As static margin
becomes more negative, the autopilot gearing necessary for stability
increases at a lower rate because control-moment effectiveness (Cmﬁ)

and aerodynamic damping (Cmé + Cmé) are increaesing. The damping trend

would be characteristic of most aserodynamic configuratlons while the
control-moment effectiveness would not. Hence, the variance of the
gshape of this boundary depends largely on the type and position of the
control surface.

Digplacement feedback only and a servo with a simple time lag
= 1/wg® = 0, 28g/wg = 0.02).- In this case stability is obtained only
in a small region of the negative statlc-margin-autopllot-gearing plane.
Hence, the boundary for disgplacement feedback only is extremely sensi-
tlve to time lags. The time lag used in this case is the same as that
mentioned for the rate gyro in the analysis and 1s a practical value for
a servo with a natural frequency of 60 radians per second.

Rate feedback only and a perfect servo (R=l, 2{ /wg = 1/wg® = T=0).-

The characteristic equation becomes:

(1+TD) (D) (aoD3+bgD+cp) + KgKg R (a3D+by)

In thie case the boundary also extends without limit into the negatilve
static-margin region. No frequencles are noted on this boundary because
the roots of the characteristic equation are. always real for negative
static margin, which means that the motion is nonoscillatory convergent
on the stable slde and nonoscillatory divergent on the unstable side.
The characteristic equation also hag a zero root which indicsates that
the system i1s neutrally stable with respect to pitch angle 6. In other
words the steady-state pitch angle will differ from the input piltch
angle by an amount depending on the input.

Rate feedback only and a perfect servo with a simple time lag
(R =1, 2lg/wg = 0.02, T = 1/wg® = Q).- This boundary is nearly identical
to the one without time lag and for this reason the two curves are
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shown as one. The characteristic equation is the same whether the time

lag occurs in the control servo or the rate gyro. Hence, the stability

boundary of a rate~feedback system is not appreciably changed by a small
time lag in the control servo or the rate gyro.

Discusgion of the Simplified Cases

The results of these simplifled cases indicate that neither a
displacement-feedback nor a rate-feedback autopilot would give satisfac-
tory stability at negative static mergins for this configuration. In
the former case, a perfect displacement signal would provide stability,
but such a system is very sensitive to time lags and appears unsatisfac-
tory for time lags of the order of those that might exist in a physical
system. For the rate-feedback system, time lags of practical magnitude
(0.02 second) had little effect, but thie system is only neutrally stable
with respect to pitch angle. Consequently, during the boost phase when
the radar-guldance system 1s inoperative, an attitude or space reference
would be necessary to insure sufficiently small dispersion at burn-out.
Such a reference is provided by angle-of-pitch feedback in the complete
autopilot.

Effect of Autopilot Characteristics on
Stability Boundaries

Although the simplified casges give indications of the effects of
individual feedback signals, the exact effects must be determined with
the complete system. In order to do this, one variable was changed while
the others were held constant at a practical value. In this way, the
effects of rate feedback, servo time lag, and servo natural frequency on
the stability bounderies were examined and the results are shown in
figures 4, 5, and 6, respectively, as described below.

Effect of rate feedback on stability boundary.- In figure L,
practical values were selected for the rate-gyro time lag, servo time
leg, and servo natural frequency (T = 0.02, 2fg/wg = 0.03, wg = 60).
This value of the time constant 2§s/wS corresponds to s damping-ratio
gsetting of 0.9 '1in the control servo. In practice this would be con-
sldered a high setting for the damping ratio of a servo, but, as will be
shown presently, lower settings of damping ratio give a wider range of
stability. It is unlikely that higher values of servo damping ratio
would be used in practice. Then various values were assigned to the
rate-digplacement ratio. For zero rate feedback R = O and even
for R = 0.02, the stability boundary extends only slightly into the nega-
tive region. :However, if gufficient rate is used to counteract the
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effect of servo time lag (R = 2{gz/wg = 0.03), the boundary extends far
into the negative static-margin region. Increasing rate feedback even
more, R = 0.08 extends the boundary even farther into the negative
region. It should be noted at this point that at the higher rate there
are two dlstinct bounderies, a lower boundary with a frequency of the
order of the airframe short period and an upper boundary with a much
higher frequency. If the second-order term in the control servo is neg-
lected, this upper boundary occurs at infinity. This boundary, then, 1s
largely dependent on the control-servo natural frequelicy and ls more
fully explained in the discussion of the effects of control-servo nstural
frequency. : ; '

There is no theoretical limit to the extension of the lower boundary
into the negative static-margin plane by increasing rate feedback, but
there are practicael limitetions to the amplification af the rate signal,
for, if rate ratio R 1is increased beyond a value of 0.08, the upper
boundary ls lowered and the autopllot gearings regquired to remain in the
stable reglon become very smell. For example, at a rate ratlo of 1 and
e static margin of -0.04, the autopilot gearing required for stability
must fall between 0.04% and 0.09. Hence, the practicel limit to amplifi-
cation of the rate signal depends on the minimum practical value of suto~
pilot gearing. Furthermore, a wide range of autopilot gearings in the
stable range 1is desirable to compensate for variations in aerodynamic

8 .
‘gearing <—-§> wlth Mach number and altitude. From this standpoint,
the optimum rate is approximately 0.08 which at a static margin of -0.0k
gives a range of autopilot gearings of 0.11 to 1.28. _

Effect of control-servo time lag on stability boundaries.- In
figure 5, the values of rate-gyro time lag (T = 0.02) and control-servo
natural frequency (wWg = 60) from figure 4 were used. However, in this
figure rate-displacement ratio le held constant at 0.03 and control-
servo time lag is varied. For a control-servo time lag equel to the
rate-displacement ratio, (2{g/wg = R = 0.03), the boutridary extends well
into the negative static-margin region. If servo time lag is decreased
(2tg/wg = 0.02 which corresponds to a damping ratioc of 0.6), the renge
of stability 1s greatly increased. On the other hand, 1f servo time lag
is increased only slightly 2f{g/wg = 0.04, the boundary curves back at a
small negative value of static margin. Thus it appears that stability
cannot be obtained over a wilde range of negative gtatic margins unless
the time lag in the control servo (2{g/wg) 1s less than or equal to the
rate-displacement ratio R. The reason for this is apparent, for the
time lag in the control servo causes a phase lag of output to input
which, for & statlcally unstable airframe, results in instaebility unless
the feedback signal has a sufficient phase lead to counteract the phase
lag of the servo. ©Since the phase lead of the combined feedback signals
is dependent almost entirely on the rate ratio, stability is obtained

|
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when the rate ratio, which is equivalent to a time lead, 1s set equal to
the control-servo time lag. However, the phase lead of the combined
feedback signals 1s also dependent on frequency and rate-gyro time lag,
but their effects are negligible when the product of the rate-gyro time
lag and the system frequency is much less than 1 (Tw << 1), as is the
case in the example.

Similar results are obteined when the rate reatio is higher (R= 0.08),
but the damping ratios necessary to make the time constant (2(5/wg) equel

to the rate ratioc are completelyv unresalistic (fe = o h) However ainece
A N ek N L= A e Tl A b NS el N \-!WH-L\' U\-'-I-J lddede N s e £ W e — fa & _l'l L Ak VY e ¥ , (= A

the rate ratio of 0.08 gives the widest range of gtability at negative
static margins, this value of rate will be used in the following discus-
sion on the effects of control-servo frequency.

Effect of control-servo natural frequency on the stabilility
boundery.- Inasmuch as present-day servo natural frequencies ordinarily
fall between 30 and 180 radians per second, an investigation of the
effect of servo natural frequency on the stability boundaries was made

and the results are shown by figure 6. In this case, rate-feedback
ratio, servo time lag, and rate-gyro time lag were held constant
(R = 0.08, 2tg/wg = 0.03, T = 0.02) while servo natural frequency wes
varied. These curves are made up of two distinct branches, as indicated
by the double value of frequency at the sharp point and the sudden Jjump
in frequency from the lower branch to the upper. The lower boundary with
its frequencies of O to 4 radians per second is practically invariant
with servo natural frequency, which indicates that it corresponds to the
system mode associated with the airframe short-period osclllastory mode.
On the other hand, the upper boundary varies widely with servo natural
frequency, which indicetes that it is the boundary for another system
mode which is associsted closely with the control-servo oscillatory mode.

it is interesting to note that a large increase in the stgble
operating range (x/c = ~0.52 to -1.0) is obtainable by increasing the
control-servo natural frequency from 30 to 60 radians per second, while
increasing the frequency from 60 to infinity radians per second only
results in a small gain in operating range (x/& = -1.0 to -1.18). Thus,
it appears that the servo-naturael-frequency rzquirements for a satis-
factory stabilization system of this type would not be particularly
severe.

Effect of Autopilot Characteristiecs on the
Damping Ratio and Period

Up fo this point, only the boundaries of stability have been
determined. However, for satisfactory response more than the mere
requirement of stability must be specified. In the actual physical
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problem the time to damp, time of response and peak overshoot of the
translent response resulting from verious inputs such as gust disturb-
ances, out-of-trim moments, noise, etc., must be kept within reasonable
limits. For example, although the missile-autopllot comblnation might
be stable, if the damping ratio were small, the overshoot in response to
a gust might be so large as to cause s large dispersion at burn-out.

Since & quantitative study of the transient response with various
inputs is beyond the scope of this report, gatisfactory stability will
.be Judged on the basis of "rule of thumb" values of damping ratio for
satisfactory stabllity of a servomechanism. The rule of thumb is that
the demping ratic { ©be less than 1.0 but greater than 0.35, which
corresponds to O~ to 30-percent peak overshoot in the transient response
to a step input. For this purpose, the curves of constant damping ratio
and period in figures 7 and 8 were constructed by methods mentioned
previously in the analysis. Actually two families of damping ratio and
period curves exist because there are two oscillatory modes present.
However, 1f the autopllot gearing 1s restricted to values sufficlently
below the upper boundary, as was done in this case, the mode associated
wilth the control servo is well damped and of high enough frequency to
be relatively insignificant in the stability problem. For this reason,
only the damping ratio and period curves assoclated with the airframe
short-period oscillatory mode are shown. _Since these curves are only
applicable to autopllots with servo natural frequencies of 60 radlans
per second or higher, the first-order servo spproximstion was used in
the calculations.

Effect of rate feedback on damping ratio and period.- 1In figures 7
and 8, a first-order control servo was assumed, and servo time lag and
rate-gyro time lag (2§s/bs = 0.03, T = 0.02) were held constant while
rate was varied. With the rate equal to 0.03 as shown by figure 7, all
demping ratios are less than 0.1 below a static margin of -0.03. Hence,
it may Ye seen that although the system 1s stable at negatlve statilc
margins, the transient response i1s so lightly damped that the flight
path 1s apt to be erratic. On the other hand, if the rate is Increased
to a value of 0.08 as shown by figure 8, large enough damping ratios are
avallable to insure satisfactory stablility at negative statlic margins.
Increasing the rate also has the effect of reducing the perlod which
tends to decrease the time of response. Thus the effect of increasing
rate 1s favorsble 1n all respects in improving the transient response to
give satisfactory stability.

Although the curves of constant demping ratio and period of figure 8
are shown only to a static margin of -0.06, calculation of the roots of
the characteristilc stabillity equation show that demping ratios of greater
than 0.35 can be obtained down to a static margin of -0.5. At positive
static marging, the damping ratios are much lower and, for this reason,
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it would be advantageous to operate the missile entirely in the negative
static-margin region.

Effect of Phugoid and Other Modes on Stability
and Transient Response

Stability.~- In the analysis and previous discussion only four of
the roots of the characteristic stability equation were considered.
Because the characteristic stability equation 1s of higher order than
four, other roots with positive real parts might be present. For this
reagon, the regions within the upper and lower stability boundaries are
not indicative of stability unless all the other roots have negative real
parts. In order to check these roots and verify the stability of all
modes within these stability boundaries, the complete-system character-
istic stability equation was formed using three degrees of freedom in
the aerodynamic transfer function. From this seventh-order differential
equation, another stability boundary was determined which will be called
the system phugoid stability boundary. As shown in figure T, this
boundary fells below the K = 0 axis for positive values of static
margin, and, in the vicinity of the neutral point, it splits into two
aperiodic stabllity boundaries which fall below the boundaries associ-
ated with the short-period and control-servo modes. The three stability
boundaries account for six of the roots. The seventh, which may be
associated with the time lag in the rate gyro, is & large negative root
and 1is also stable within regions of practical interest. Hence, it may
be concluded that the regions within the short-period and control-servo
stability boundaries and the K = 0 axis are stable in all modes.

The assumption of two degrees of freedom in the aerodynamics is not
valld near the system phugoid stability boundary. However, calculetions
show that the stabllity boundaries and curves of constent damping ratio
and period are gufficlently accurate down to an autopilot gearing of 0.05
when two degrees of freedom are assumed. The region below this value
was not investigated thoroughly because it was out of the practical
operating range of autopilot gearings. For this reason the contours of
figures 7 end 8 are not shown in the negative region below K3zKg = 0.05.

} Trangient response.- In previous discussions, degree of stability

s Jjudged by the damping ratio and period of only one mode, the mode
XZsociated with the alrframe short periocd. -“This procedure was used
because it wae belleved that the effect of other modes on the transient
response would be insignificant. In order to verify this assumption,
the transient response to a step imput 64 was determined at & repre-
sentative number of points by applylng Heavisides' Expansion Theorem to
the transfer function 60/91 for three degrees of freedom which gave'an

4
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analytical expression for the translent response as & sum of the various
modes. From thls expression the relative magnitudes of the various modes
were determined. It should be remembered that, although the open-loop
component modes are interrelated by closing the loop; the principal part
of certain modes of the closed-loop system may be attributed to certain
of the open-loop component modes. In the followlng discussion, the

roots of the characteristic equation will be ldentified with the princi-
pal open-loop root with which it ig associated.

In the stable region of positive autoplilot gearing, the character-
istic stablility equation has two real negative roots which in the region
close to the system phugoid boundary are associated with the airframe
phugoid. These roots indicate a nonoscillatory subsident motion in the
transient response. One of these roots 1s very small, approxl-
mately -0.012, which means that the time for the motion to reach half
amplitude is nearly 60 seconds. Therefore, the time of response
(reference 1) would be greatly increased if the maximum value of this
subsident motion were large compared to the maximum value of other modes.
However, at KgKg = 0.05, which is close to the limit of practical
values of autopllot gearing, the maximum value of the subsident motion
is only 10 percent of that of the oscillatory mode assoclated with the
alrframe short period, and at higher autopilot gearings the percentage
is even less. The foregoing indicates that, except near the system
phugoid stability boundary, the effect on the transient response of not
considering the third degree of freedom is negligible. The other root
associated with the phugoid is generally much larger (approximately =-2)
and, hence, the motion damps to half amplitude in 0.35 second. Because
it damps rapidly and its amplitude is very smsll, its contribution to
transient response is small. Also, this root is closely assoclated
with b;/a; and occurs to some extent even when two degrees of freedom
are assumed. T

In the stable reglon, the characteristic stability equation also
has a palr of complex conjugate roots with negative resl parts associ-
ated with the control-servo mode. As mentioned previously, this mode
is of high frequency compared to other modes. However, for values of
autopllot gearing well below the upper stability boundary (Ksz < 1/2
upper boundary), the meximum amplitude of this mode 1s less than 1 per-
cent of the mode associated with the milssile short period. Hence,
except possibly near the upper boundsry, the effect of the system servo
mode on transient response is negligible.

Another root of the characteristic equation is real, large, and
negative, and arises principally from the rate-gyro time-lag term.
Since this root is spproximstely -50, the motion reaches half amplitude
in approximately 0.0llk second and, since the maximum valueé is not
excesslve, it too may be neglected in the transient response.
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CONCLUDING REMARKS

In this theoretical investigation of the stabllity of a varisble-
incidence boost-glide migsile with an autoplilot, the practicability of
obtaining satisfactory stability at negatlive static margins has been
demonstrated. It has been shown that the steble flight region in the
autopilot-gearing-static~margin plane is bounded by three stability
boundaries, an upper boundary governed principally by the control-servo
dynamics, a lower boundary governed principally by the alrframe short-
period mode, and another lower boundary governed prineipally by the
alrframe phugoid mode. With the exception of gearings in close proximity
to the system phugoid or the control-servo boundaries, the system mode
assoclated with the airframe short period is the principal mode for
gearings on the stable side of the boundaries, and the transient response
may be considered as that of a second-order system. Furthermore, curves
of constant damping ratio and periocd for this principal mode may be
determined with assumptions of two degrees of freedom for the airframe
and a first-order system for the control servo.

Successful operation of this missile~autopilot combination at
negative static margin was dependent mainly on two factors: (1) the
control-servo natural frequency had to be high enough to permit an ade-
quate range of autopilot gearings, but there appesred to be no particular
advantage in going to very high frequencies (higher than 60 radians per
second), and (2) the ratio of rate-gyro to displacement-gyro gain R
had to be equal to or greater than the time lag in the control servo
(2§s/ws). An increase in time lag tended to decrease the gtable region,
and an increase in the rate galn tended to increase the steble region
up to & rate ratio R of 0.08. Above this value the range of available
autopilot gearings for stability decreases rapidiy. With practical
values of autopilot settings and reasonasble time lags, satisfactory
degree of stability 1s obtained with a varilation in static margin from
approximately -0.02 to -0.5.

Although these concluding remasrks are based on the particular
configuration used in the example, 1t sppears that similar results and
conclusions would be obtailned for a wide class of sirplenes and missiles
with this type of autopllot, and that satisfactory stable flight at
negative static margins is practical even with this simple conventional
autopilot.

Ameg Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif.
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TABLE I.- STABILITY DERIVATIVES: OF
A SUPERSONIC MISSILE

' Mach NUMDET « o « o = o s o s o o o o s s s o o s o o s o o 2
Altitude, feet . o ¢ ¢ ¢« o o ¢ o o o« « o s + o « s » s 30,000
Xy * » o » o o s s o o o s o s s e e e e e e s e+ . 0.018
Xg « = o o o o o o o s o v s s e e+« .. 0.0238 -0.0555 x/C
X@ o = « o o o s o s o s s s e oo s . 0.0242 -0.000385 x/E
Xg * ¢ ¢ = s e s o s s s e s s e e .o . 0.058x/C

ZU ¢ o o o 8 6 s s s s s s s 8 s e s s 8 s s s e v @ 0.0159
Z o o + o e s s o s e s s e s s e s s s s e s e s e . 2,118
- T R T T S
ZE o o e+ v e o s s e s s s s e e e se s e s 1.03
Cmy, =+ *» =« « s s+ s oo+« 0.01311 -0.0188 x/c
Cmy, + + = ot e o o oo oo e vt =18 x/E
Crms » = o o » oo o o oo oo -(0.00252 + 0.000223 x/&)
-(0.01052 + 0.00328 x/& + 0.003698 x2/c2)
Cmg =+ + s s s e s o e e LT3 -2.061 x/¢

IAs expressed in reference 2. QQ:EE:::F’
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Figure /.-Block diagram of missile with autopilot.
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Figure 3.— Stability boundaries of simplified cases.
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Figure 4.- Effect of rate feedback on stability boundary.
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Figure 5 Effect of conirol-servo time lag on stability boundaries.
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Figure 6.~ Efrect of confrol-servo natural frequency on stability

boundaries.
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